Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 358: 120888, 2024 May.
Article in English | MEDLINE | ID: mdl-38615399

ABSTRACT

Oil dispersion, a crucial process in oil transport, involves the detachment of oil droplets from slicks and their introduction into the water column, influencing subsequent oil migration and transformation. This study examines oil dispersion, considering characteristics, stability, and mechanisms, while evaluating the impact of dispersants and salinity. Results show the significant role of surfactant type in dispersants on oil dispersion characteristics, with anionic surfactants exhibiting higher sensitivity to salinity changes compared to nonionic surfactants. The dispersion efficiency varies with salinity, with anionic surfactants performing better in low salinity (<20‰) and nonionic surfactants showing superior performance at 30-35‰ salinities. Rheological analysis illustrates the breakup and coalescence of oil droplets within the shear rates of breaking waves. An increase in interfacial film rigidity impedes the coalescence of oil droplets, contributing to the dynamic stability of the oil-water hybrid system. The use of GM-2, a nonionic dispersant, results in the formation of a solid-like interface, characterized by increased elastic modulus, notably at 20‰ salinity. However, stable droplet size distribution (DSD) at 35‰ salinity for 60 h suggests droplets can remain dispersed in seawater. The enhancement of stability of oil dispersion is interpreted as the result of two mechanisms: stabilizing DSD and developing the strength of viscoelastic interfacial film. These findings offer insights into oil dispersion dynamics, highlighting the importance of surfactant selection and salinity in governing dispersion behavior, and elucidating mechanisms underlying dispersion stability.


Subject(s)
Surface-Active Agents , Surface-Active Agents/chemistry , Petroleum Pollution , Salinity , Rheology , Petroleum , Seawater/chemistry
2.
J Hazard Mater ; 460: 132523, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37703741

ABSTRACT

Adsorbents play a vital role in responding to marine oil spills, yet effectively cleaning up viscous oil spills remains a technical challenge. Herein, we present a superhydrophobic oil-adsorbing felt prepared using melt-blown technology and functionally enhanced with a photoelectric composite CNT/PANI coating for effectively cleaning up high-viscosity oil spills. By virtue of its superior solar/Joule heating ability and thermally conductive fiber network, p-CNT/PANI@PP notably reduced crude oil viscosity and enhanced the oil diffusion coefficient within pores. Leveraging primarily solar heating and supplemented by Joule heating, p-CNT/PANI@PP demonstrates an impressive in-situ adsorption rate of up to 560 g/h for ultra-high-viscosity crude oil (c.a. 138000 mPa·s), alongside an adsorption capacity of 15.57 g/g. This measure enables efficient viscosity reduction and continuous day-and-night recovery of viscous crude oil, addressing the challenges posed by seasonal fluctuations in seawater temperature and adverse weather conditions. Moreover, a conveyorized collector integrated with an oil-adsorbing felt realizes continuous recovery of viscous oil spills with speed control to tackle varying thicknesses of oil film. Given the top-down material design, superior functionality, and applicability to applications, this work provides a comprehensive and feasible solution to catastrophic large-area viscous oil spills.

3.
Chemosphere ; 340: 139803, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37579821

ABSTRACT

Rapid and efficient recovery of oil spill is the key link for oil spill remediation, and also a great challenge. Here, the organogelator-polymerized porous matrix composed of adsorbents and organogelators can provide a new strategy for solving this problem. The gelling mechanism of aluminum 12-hydroxystearate (Al HSA) to form spherical nano micelles in solvents was investigated via UV-vis, FT-IR, and XRD. A creative method for aluminum soap-lignin gelator (OTS-AL/Al HSA) syntheses was put forward through the saponification of 12-hydroxystearic acid (HSA) and lignin via epichlorohydrin (ECH) crosslinking. By adjusting the ECH content, the growth of Al HSA nanoparticles (15-40 nm) on lignin can be realized, and the accordingly increased roughness endowed gelator with better hydrophobicity (WCA of 134.6°) before octadecyltrichlorosilane (OTS) modification. Thanks to the porous structures, the gelator powder exhibited a high sorption capacity in the range of 3.5-5.2 g g-1 for oils and organic solvents. Rheological studies demonstrated high mechanical strength of gels (>1.6 × 105 pa) and the gelator still retained 70% sorption capacity after 6 gelation-distillation cycles. The gelation characteristics of OTS-AL/Al HSA were attributed to the rapid sorption of oils by lignin and the self-assembly of Al HSA nano micelles on lignin to form an aggregated network structure trapping oils, thus realizing the synergistic effect of oil sorption-gelation.


Subject(s)
Lignin , Water , Water/chemistry , Powders , Aluminum , Soaps , Spectroscopy, Fourier Transform Infrared , Oils/chemistry , Solvents/chemistry , Gels/chemistry
4.
Int J Biol Macromol ; 245: 125452, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37331538

ABSTRACT

Polysaccharides derived from microorganisms exhibit diverse structures and bioactivities, making them promising candidates for the treatment of various diseases. However, marine-derived polysaccharides and their activities are relatively little known. In this work, fifteen marine strains were isolated from surface sediments in the Northwest Pacific Ocean for screening of EPS production. Planococcus rifietoensis AP-5 produced a maximum yield of EPS at 4.80 g/L. The purified EPS (referred to as PPS) had a molecular weight of 51,062 Da and contained amino, hydroxyl, and carbonyl groups as its major functional groups. PPS primarily consisted of →3)-α-D-Galp-(1 â†’ 4)-α-D-Manp-(1 â†’ 2)-α-D-Manp-(1 â†’ 4)-α-D-Manp-(1 â†’ 4,6)-α-D-Glcp-(1 â†’ 6)-ß-D-Galp-(1→, with a branch consisting of T-ß-D-Glcp-(1→. Additionally, surface morphology of PPS was hollow, porous, and sphere-like stack. PPS primarily contained C, N, and O elements, with a surface area of 33.76 m2/g, a pore volume of 0.13 cc/g, and a pore diameter of 1.69 nm, respectively. Based on the TG curve, the degradation temperature of PPS was measured to be 247 °C. Furthermore, PPS demonstrated immunomodulatory activity through dose-dependently upregulating the expression level of cytokines. It significantly enhanced the cytokine secretion at a concentration of 5 µg/mL. To sum up, this study offers valuable insights for screening marine polysaccharide-based immunomodulators.


Subject(s)
Immunologic Factors , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Cytokines , Molecular Weight
5.
J Environ Manage ; 342: 118357, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37315462

ABSTRACT

Intimately coupled photocatalysis and biodegradation (ICPB) systems represent a promising wastewater treatment technology. The implementation of ICPB systems for oil spill treatment is a pressing concern. In this study, we developed an ICPB system comprising BiOBr/modified g-C3N4 (M-CN) and biofilms for the treatment of oil spills. The results demonstrate that the ICPB system achieved the rapid degradation of crude oil, outperforming the single photocatalysis and biodegradation methods by degrading 89.08 ± 5.36% within 48 h. The combination of BiOBr and M-CN formed a Z-scheme heterojunction structure, enhancing the redox capacity. The interaction between the holes (h+) and the negative charge on the biofilm surface promoted the separation of electrons (e-) and h+, thereby accelerating the degradation process of crude oil. Moreover, ICPB system maintained an excellent degradation ratio after three cycles and its biofilms progressively adapted to the adverse effects of crude oil and light. The microbial community structure remained stable throughout the degradation of crude oil, with Acinetobacter and Sphingobium identified as the dominant genera in biofilms. The proliferation of the Acinetobacter genus appeared to be the main factor contributing to the promotion of crude oil degradation. Our work demonstrates that the integrated tandem strategies perhaps represent a feasible pathway toward practical crude oil degradation.


Subject(s)
Petroleum , Bismuth , Biodegradation, Environmental , Biofilms
6.
Mar Pollut Bull ; 193: 115209, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37364339

ABSTRACT

The coast of Laizhou Bay is plagued by a number of environmental issues, such as eutrophication, which are likely to worsen over the next few decades as a result of trends toward industrialization and urbanization. High nutrient levels in the Xiaoqing River are believed to be the main cause of Laizhou Bay becoming eutrophicated. Therefore, we conducted two cruises from the Xiaoqing River estuary to Laizhou Bay in August 2022 and December 2022, respectively, in the wet and dry periods to assess the potential impact of status of eutrophication due to human activities. The results showed that the concentration of DIN was higher than the quality standard for water (fi > 1) in both the wet season (August 2022) and the dry season (December 2022). DIN has major environmental impacts in Laizhou Bay. The eutrophication level index and organic pollution index have obvious spatial and temporal characteristics. In terms of time, the dry season is higher than the wet season. In space, Xiaoqing estuary is higher than Laizhou Bay. In the two surveys, DIN and DIP concentrations were significantly positively correlated, indicating that N and P pollution in the region had a common source and destination, and the spatial distribution was also similar. In addition, the current environmental conditions in the region are not ideal, reaching moderate and severe eutrophication levels, which proves that the ecosystem has the risk of aggravating degradation. As the Xiaoqing River is about to resume full navigation, human-related nutrient input (especially DIN) will continue to increase, and it is expected that the eutrophication risk in this area will increase in the next few years due to the increase in nutrient load.


Subject(s)
Ecosystem , Rivers , Humans , Estuaries , Bays , Environmental Monitoring/methods , Eutrophication , China , Nitrogen/analysis
7.
Sci Total Environ ; 875: 162418, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36858214

ABSTRACT

Biomarkers offer unique insights into the state of the environment, but little is known about how they interact with microbial communities in the open ocean. This study investigated the correlative effects between microbial communities and n-alkane distribution in surface seawater and sediments from the Kuroshio Extension in the Northwest Pacific Ocean. The n-alkanes in both surface seawater and surface sediments were mostly derived from algae and higher plants, with some minor contributions from anthropogenic and biological sources. The composition of microbial communities in surface seawater and sediments was different. In surface seawater, the dominant taxa were Vibrio, Alteromonas, Clade_Ia, Pseudoalteromonas, and Synechococcus_CC9902, while the taxa in the sediments were mostly unclassified. These variations/fluctuations of n-alkanes in three areas caused the aggregation of specialized microbial communities (Alteromonas). As the characteristic composition indexes of two typical n-alkanes, Short-chain n-alkane carbon preference index (CPI-L) and long-chain n-alkane carbon preference index (CPI-H) significantly influenced the microbial community structure in surface seawater, but not in surface sediments. Effect of CPI on microbial communities may be attributed to anthropogenic inputs or petroleum pollution. The abundance of hydrocarbon degradation genes also varied across the three different areas. Our work underscores that n-alkanes in the oceans alter the microbial community structure and enrich associated degradation genes. The functional differences in microbial communities within different areas contribute to their ecological uniqueness.


Subject(s)
Alkanes , Seawater , Alkanes/analysis , Pacific Ocean , Seawater/chemistry , Oceans and Seas , Carbon/analysis , Geologic Sediments/chemistry
8.
Glycoconj J ; 39(6): 773-787, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36367683

ABSTRACT

The pH value was essential for the growth and metabolism of microorganisms. Acidic pH exopolysaccharide (AC-EPS) and alkaline pH exopolysaccharide (AL-EPS) secreted by A. australica QD mediated by pH were studied in this paper. The total carbohydrate content and molecular weight of AC-EPS (79.59% ± 2.24% (w/w), 8.374 × 105 Da) and AL-EPS (82.48% ± 1.46% (w/w), 6.182 × 105 Da) were estimated and compared. In AC-EPS, mannose (3.78%) and galactose (3.24%) content was more, while the proportion of glucuronic acid was less in comparison to AL-EPS. The scanning electron microscopy revealed the structural differences among the AC-EPS and AL-EPS. Thermogravimetric analysis showed degradation temperatures of 272.8 °C and 244.9 °C for AC-EPS and AL-EPS, respectively. AC-EPS was found to exhibit better rheological properties and emulsifying capabilities, while AL-EPS had superior antioxidant activities. Overall, both AC-EPS and AL-EPS have the potential to be used as emulsifiers and biological antioxidants.


Subject(s)
Alteromonas , Antioxidants , Antioxidants/chemistry , Polysaccharides, Bacterial/chemistry , Molecular Weight , Hydrogen-Ion Concentration
9.
Int J Biol Macromol ; 221: 1373-1383, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36151616

ABSTRACT

Although exopolysaccharide (EPS) has been applied to various fields, EPS for UVR-mediated oxidative stress repair still needs further exploration. In this study, a novel EPS was isolated from the fermentation medium of Bacillus sp. QDR3-1 and its yield was 4.8 g/L (pH 8.0, 12 % glucose, 30 °C and 6 % NaCl). The pure fraction (named EPS-M1) was purified by DEAE-cellulose and Sephadex G-100 column. EPS-M1 was a heteropolysaccharide composed of Man, Glc, Gal, and Fuc with a molecular weight of 33.8 kDa. Scanning electron microscopy (SEM) observed a rough surface and reticular structure of EPS-M1, and EPS-M1 formed spherical aggregates in aqueous solution observed in atomic force microscopy (AFM). Thermal analysis revealed that the degradation temperature of EPS-M1 was 306 °C. Moreover, methylation and NMR analysis determined that EPS-M1 was consisted of →3)-Manp-(1→, →2,6)-Manp-(1→, →4,6)-Glcp-(1→, →3)-Glcp-(1→, →4)-Galp-(1→, →4)-Fucp-(1→, and T-Manp-(1→. Furthermore, the cytotoxicity and the repair ability of UVR-mediated cell damage of EPS-M1 were studied with L929 cells. The results showed that EPS-M1 had good biocompatibility and it could mitigate UVR-mediated cell damage by regulating the levels of cellular reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (MMP) and Caspase-3/7 activity. Overall, the structure analysis and the protective effects of EPS against L929 cells exposed to UVR provided an experimental basis for EPS in practical applications.


Subject(s)
Bacillus , Polysaccharides, Bacterial , Humans , Polysaccharides, Bacterial/chemistry , Ultraviolet Rays , Molecular Weight
10.
J Colloid Interface Sci ; 607(Pt 1): 607-620, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34520904

ABSTRACT

A photocatalytic process was used to effectively remove glyphosate, an emerging pollutant and contaminant, through advanced oxidation. For this purpose, a feasible combination strategy of two-step anodisation and electrodeposition methods were proposed to fabricate graphene quantum dots (GQDs) supported titanium dioxide nanotube arrays (TNAs). The resultant GQDs/TNAs heterojunction composite exhibited significant degradation reactivity and circulation stability for glyphosate due to its excellent photo-generated electron and hole separation ability. After the introduction of GQDs into TNAs, the photodegradation efficiency of glyphosate increased from 69.5% to 94.7% within 60 min under UV-Vis light irradiation (λ = 320-780 nm). By analysing the intermediate products and through the evolvement of heteroatoms during glyphosate photodegradation, alanine and serine were discovered for the first time, and a detailed degradation mechanism of glyphosate was proposed. This study indicates that GQDs/TNAs heterojunction composite can almost completely degrade the glyphosate into inorganics under the appropriate conditions.


Subject(s)
Graphite , Nanotubes , Quantum Dots , Catalysis , Glycine/analogs & derivatives , Light , Titanium , Glyphosate
11.
Environ Pollut ; 269: 116111, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33290953

ABSTRACT

Polymer flooding is one of the most important enhanced oil recovery techniques. However, a large amount of hydrolyzed polyacrylamide (HPAM)-containing wastewater is produced in the process of polymer flooding, and this poses a potential threat to the environment. In this study, the treatment of HPAM-containing wastewater was analyzed in an ozonic-anaerobic-aerobic multistage treatment process involving an ozone reactor (OR), an upflow anaerobic sludge blanket reactor (UASBR), and an aerobic biofilm reactor (ABR). At an HPAM concentration of 500 mg L-1 and an ozone dose of 25 g O3/g TOC, the HPAM removal rate reached 85.06%. With fracturing of the carbon chain, high-molecular-weight HPAM was degraded into low-molecular-weight compounds. Microbial communities in bioreactors were investigated via high-throughput sequencing, which revealed that norank_c_Bacteroidetes_vadinHA17, norank_f_Cytophagaceae, and Meiothermus were the dominant bacterial groups, and that Methanobacterium, norank_c_WCHA1-57, and Methanosaeta were the key archaeal genera. To the best of our knowledge, this is the first study in which HPAM-containing wastewater is treated using an ozonic-anaerobic-aerobic multistage treatment system. The ideal degradation performance and the presence of keystone microorganisms confirmed that the multistage treatment process is feasible for treatment of HPAM-containing wastewater.


Subject(s)
Ozone , Water Purification , Acrylic Resins , Anaerobiosis , Biodegradation, Environmental , Biofilms , Bioreactors , Sewage , Waste Disposal, Fluid , Wastewater
12.
Bioresour Technol ; 306: 123089, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32155564

ABSTRACT

Dissolved oxygen (DO) played a short board effect on nitrogen biotransformation and pollutant metabolism. This study for the first time explored the key role of different levels of DO (covering anaerobic, anoxic and aerobic) on hydrolyzed polyacrylamide (HPAM) bioconversion. HPAM was metabolized to intermediates with different chain length. Volatile fatty acid (VFA) production rose first and then descended with DO concentration (0-2 mg·L-1), and the maximum reached 92.5 mg·L-1 when DO was 0.5 mg·L-1. Total nitrogen (TN) removal increased first and then dropped with DO concentration, and the maximum (61.4%) occurred at 0.5 mg·L-1 DO. NH4+-N dipped from 42.8 to 0 mg·L-1 and NO3--N rose from 0 to 32.8 mg·L-1 with DO concentration. The changes of enzyme activities were consistent with those of VFA production and TN removal, which were related to HPAM metabolism and N bioconversion. Microbial function was correlated to HPAM metabolism, N bioconversion and key enzyme.

13.
Bioresour Technol ; 293: 122023, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31472407

ABSTRACT

The differences of crude oil recovery ratio resulted in different levels of crude oil in actual hydrolyzed polyacrylamide (HPAM)-containing wastewater. The effect of crude oil on HPAM biotransformation was explored from bioresource production, enzymatic activity and microbial function. In aerobic biosystems, the highest polyhydroxyalkanoate (PHA) yield (19.6%-40.2%) and dehydrogenase (DH) activity (4.06-8.32 mg·g-1 VSS) occurred in the 48th hour, and increased with crude oil concentration (0-400 mg·L-1). In anoxic biosystems, the highest PHA yield (24.5%-50.5%) and DH activity (3.24-6.69 mg·g-1 VSS) occurred in the 72nd hour, and increased with crude oil concentration. The higher substrate removal (38.5%-65.7%) occurred in aerobic biosystems, while the higher PHA accumulation occurred in anoxic biosystems. PHA yield, DH activity and HPAM removal were related. Microbial function related to HPAM biodegradation and PHA synthesis was discussed. The main function of Pseudomonas and Bacillus in aerobic biosystems was to degrade HPAM, and in anoxic biosystems was to synthesize PHA.


Subject(s)
Petroleum , Acrylic Resins , Biotransformation , Wastewater
14.
Sci Total Environ ; 695: 133694, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31421331

ABSTRACT

A novel photocatalytic carbon nanotube sponge with three-dimensional Bombax-structure was fabricated by a facile chemical vapor deposition followed by in situ ion-exchange approach. The as-prepared sponge achieved both high-efficiency adsorption and photocatalysis towards antibiotics, which can remove up to 90% of tetracycline within an hour. The morphology and mechanism of the photocatalytic CNT sponge were explored by multiple measures. Results show the functional groups and high specific surface area of CNT sponge play vital roles in preparing this Bombax-structured Ag3PO4/CNT sponge, the band gap of which can be tuned by varying the ration between Ag3PO4 and CNT. The photodegradation experiments of tetracycline with the assistance of ultrasound irradiation were performed, Ag3PO4/CNT sponge exhibits preferable photocatalytic activity, which can be attributed to both the enhancement of specific surface area of Ag3PO4 and the cavitation effect on CNT surface. The efficiency contributed by ultrasound could account for more than half of the degradation efficiency when the ultrasound power was 100 W. The improvement in transfer efficiency and the delay in charge recombination of Ag3PO4/CNT sponge were further verified by Electrochemical impedance spectra (EIS) and Photoluminescence tests (PL). Reactive free-radical species were detected by the Electron Spin Resonance (ESR). The intermediates and possible pathway were analyzed by gas chromatography-mass spectrometer (GC-MS) technique.

15.
Bioresour Technol ; 287: 121404, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31108414

ABSTRACT

This work aimed to study biohydrogen (H2) and polyhydroxyalkanoate (PHA) production from original hydrolyzed polyacrylamide (HPAM)-containing wastewater. NH4+-N from HPAM hydrolysis was removed efficiently through short-cut nitrification and anoxic ammonia oxidation (anammox). Carbon/Nitrogen (C/N) ratios of effluent reached 51-97, and TOC decreased only 2%-4%, providing potential for subsequent H2 and PHA production. The maximum yields of H2 (0.833 mL·mg-1substrate) and Volatile Fatty Acid (VFA) (465 mg·L-1) occurred at influent C/N ratio of 51. Substrate removal increased linearly with the activities of dehydrogenase and hydrogenase (R2 ≥ 0.990), and H2 yield rose exponentially with enzyme activities (R2 ≥ 0.989). The maximum PHA yield (54.2% VSS) occurred at the 42nd hour and influent C/N ratio of 97. PHA yield was positively correlated with substrate uptake. The change of H2-producing, PHA-accumulating and HPAM-degradating bacteria indicated that those functional microorganisms had synergistic effects on H2 production and substrate uptake, as well as PHA accumulation and substrate uptake.


Subject(s)
Polyhydroxyalkanoates , Wastewater , Acrylic Resins , Bioreactors , Nitrification
16.
Bioprocess Biosyst Eng ; 42(6): 941-951, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30820666

ABSTRACT

Hydrolyzed polyacrylamide (HPAM) biotransformation in an up-flow anaerobic sludge blanket reactor including biodegradation performances, biodegradation mechanisms, key enzymes, and functional microorganisms was explored. Response surface methodology was applied to further improve HPAM degradation. The predicted degradation ratios of HPAM and CODCr were 46.2% and 83.4% under the optimal conditions. HPAM biodegradation ratio and total organic carbon removal ratio reached 40.5% and 38.9%. Total nitrogen concentration was dramatically decreased with the increasing fermentation time during the fermentation, while low ammonia nitrogen (NH4+-N) and nitrite nitrogen (NO2--N) were generated. NH4+-N and NO2--N increased slightly on the whole. Enzyme activity change was correlated with HPAM biodegradation. Dehydrogenase activity had a decline of 21.3-41.0%, and the minimum value occurred at 300 mg/L of HPAM. Urease activity was varied from 28.7 to 78.7% and the maximal inhibition ratio occurred at 200 mg/L of HPAM. Mechanisms for the biodegradation of HPAM were also explored by FT-IR, HPLC, and SEM. The results indicated that long-chain HPAM was broken into micromolecule compounds and the amide groups of HPAM were transformed into carboxyl groups. Based on the sequencing results on an Illumina MiSeq platform, Proteobacterias, Bacteroidetes, and Chloroflexi were turned out to be the critical microorganisms involved in HPAM degradation. This work lays a basis for HPAM-containing wastewater treatment and offers a support for water saving and emission reduction. It is of great significance to the sustainable development of oilfield.


Subject(s)
Bioreactors/microbiology , Sewage/microbiology , Waste Disposal, Fluid , Anaerobiosis , Biodegradation, Environmental , Biotransformation , Spectroscopy, Fourier Transform Infrared
17.
Bioresour Technol ; 247: 759-768, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30060411

ABSTRACT

The type of electron acceptor was a crucial factor in regulating the methanogenic process of anaerobic hydrolyzed polyacrylamide (HPAM) degradation. The combined methods of biodegradation experiments and thermodynamic calculations were applied to explore the effects of different electron acceptors on methanogenic HPAM degradation. Under the conditions of without electron acceptor, SO42-, Fe3+, SO42- and Fe3+ as electron acceptors, HPAM biodegradation ratio reached 31.56%, 41.48%, 49.4% and 61.1%, acetate production reached 0.0532, 28.28, 112.7 and 141.95mg·L-1, CH4 production reached 0.024, 0.3015, 9.446 and 11.78mg·L-1, respectively. The synergistic effect of SO42- and Fe3+ further promoted methanogenic HPAM biotransformation. Archaeal community analysis revealed that Methanobacteriales, Methanomicrobiales and Methanosarcinales were dominant. Thermodynamic opportunity windows of methanogenesis with Fe3+ as electron acceptor are 35 times larger than that with SO42- as electron acceptor. It indicated that acetoclastic methanogenesis was dominant and hydrogenotrophic methanogenesis was inhibited in the methane-producing process of anaerobic HPAM degradation.


Subject(s)
Acrylic Resins , Biodegradation, Environmental , Sewage , Anaerobiosis , Electrons , Methane
18.
Bioresour Technol ; 256: 61-68, 2018 May.
Article in English | MEDLINE | ID: mdl-29428615

ABSTRACT

Potential of hydrolyzed polyacrylamide (HPAM) biodegradation to final products was studied through regulating its own nitrogen transformation. Under the conditions of 2, 3 and 4 mg/L of DO, HPAM removal ratio reached 16.92%, 24.51% and 30.78% and the corresponding removal ratio reached 49.15%, 60.25% and 76.44% after anaerobic biodegradation. NO3--N concentration was 9.43, 14.10 and 17.99 mg/L in aerobic stages and the corresponding concentration was 0.17, 0.07 and 0.008 mg/L after anaerobic biodegradation. Oxygen as electron acceptors stimulated the activities of nitrification bacteria and other functional bacteria, thus further enhanced nitrification and HPAM biodegradation. NO3- (from HPAM oxidation) as electron acceptors stimulated the activities of nitrate-reducing, acetate-producing and methanogenic microorganisms and they could form a synergistic effect on denitrification and methanogenesis. Thermodynamic opportunity window revealed that NOx- could accelerate anaerobic HPAM bioconversion to methane. Aerobic and anaerobic growth-process equations of cells verified that the metabolism on HPAM was feasible.


Subject(s)
Acrylic Resins , Biodegradation, Environmental , Bioreactors , Denitrification , Nitrification , Nitrogen , Oxygen
19.
Bioresour Technol ; 216: 95-104, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27235971

ABSTRACT

Kinetics and thermodynamics of hydrolyzed polyacrylamide (HPAM) biodegradation in anaerobic and aerobic activated sludge biochemical treatment systems were explored to determine the maximum rate and feasibility of HPAM biodegradation. The optimal nutrient proportions for HPAM biodegradation were determined to be 0.08g·L(-1) C6H12O6, 1.00g·L(-1) NH4Cl, 0.36g·L(-1) NaH2PO4 and 3.00g·L(-1) K2HPO4 using response surface methodology (RSM). Based on the kinetics, the maximum HPAM biodegradation rates were 16.43385mg·L(-1)·d(-1) and 2.463mg·L(-1)·d(-1) in aerobic and anaerobic conditions, respectively. The activation energy (Ea) of the aerobic biodegradation was 48.9897kJ·mol(-1). Entropy changes (ΔS) of biochemical treatment system decreased from 216.21J·K(-1) to 2.39J·K(-1). Thermodynamic windows of opportunity for HPAM biodegradation were drawn. And it demonstrated HPAM was biodegraded into acetic acid and CO2 under laboratory conditions. Growth-process equations for functional bacteria anaerobically grown on polyacrylic acid were constructed and it confirmed electron equivalence between substrate and product.


Subject(s)
Acrylic Resins/metabolism , Acetates/metabolism , Aerobiosis , Anaerobiosis , Bacteria/metabolism , Biodegradation, Environmental , Bioreactors/microbiology , Electrons , Entropy , Hydrogen/metabolism , Hydrolysis , Kinetics , Sewage/microbiology , Thermodynamics , Viscosity , Wastewater/chemistry
20.
Bioresour Technol ; 207: 315-21, 2016 May.
Article in English | MEDLINE | ID: mdl-26896716

ABSTRACT

An investigation was performed to study the performance of a sequencing batch biofilm reactor (SBBR) to treat hydrolyzed polyacrylamides (HPAMs) and to determine the mechanisms of HPAM biodegradation. The mechanisms for the optimized parameters that significantly improved the degradation efficiency of the HPAMs were investigated by a synergistic effect of the co-metabolism in the sludge and the enzyme activities. The HPAM and TOC removal ratio reached 54.69% and 70.14%. A significant decrease in the total nitrogen concentration was measured. The carbon backbone of the HPAMs could be degraded after the separation of the amide group according to the data analysis. The HPLC results indicated that the HPAMs could be converted to polymer fragments without the generation of the acrylamide monomer intermediate. The results from high-throughput sequencing analysis revealed proteobacterias, bacteroidetes and planctomycetes were the key microorganisms involved in the degradation.


Subject(s)
Acrylic Resins/metabolism , Bacteria/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , Biodegradation, Environmental , Biofilms , Bioreactors , Carbon/metabolism , High-Throughput Nucleotide Sequencing , Hydrolysis , Planctomycetales/genetics , Planctomycetales/isolation & purification , Planctomycetales/metabolism , Proteobacteria/genetics , Proteobacteria/isolation & purification , Proteobacteria/metabolism , Sewage/chemistry , Sewage/microbiology , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...